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A new numerical scheme is proposed for the dispersion-convection equation which 
combines the utility of a fixed grid in Eulerian coordinates with the computational power of 
the Lagrangian method. Convection is formally decoupled from dispersion in a manner which 
does not leave room for ambiguity. The resulting convection problem is solved by the method 
of characteristics on a grid fixed in space. Dispersion is handled by finite elements on a 
separate grid which may, but need not, coincide wit the former at selected points in space- 
time. Information is projected from one grid to another by local interpolation. The conjugate 
grid method is implemented by linear finite elements in conjunction with piecewise linear 
interpolation functions and applied to five problems ranging from predominant dispersion to 
pure convection. The results are entirely free of oscillations. Numerical dispersion exists but 
can be brought under control either by reducing the spatial increment, or by increasing the 
time step size, of the grid used to solve the convection problem. Contrary to many other 
methods, best results are often obtained when the Courant number exceeds 1. 

1. INTRODUCTION 

The dispersion-convection equation is widely used to describe Fickian transport of 
pollutants in the atmosphere, oceans, lakes, rivers, and subsurface bodies of water. In 
recent years, there has been much interest in the possibility of using this equation to 
predict the effect of groundwater flow on the migration of radionuclides from 
geological repositories of nuclear waste to the biosphere. This latter problem poses a 
special challenge to the numerical analyst because subsurface transport is often 
controlled by complex three-dimensional flow patterns which can vary with time, by 
an anisotropic dispersion process whose tensorial description depends on the velocity 
field, and by other complicating linear and nonlinear phenomena such as radioactive 
decay, sorption, and chemical reactions [ 1, 5,6, 19,20, 331. 

The nature of the dispersion-convection equation can be conveniently characterized 
by the dimensionless Peclet number 

Pe=Iv(L/D,, (1) 
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where v is velocity vector, L is a characteristic length, and D, is molecular diffusion. 
For example, in the case where an inert chemical species is spreading due to 
molecular diffusion in a one-dimensional velocity field, the governing equation can be 
written as 

where c is concentration, x is spatial coordinate defined relative to L, and t is time. 
Clearly, when Pe is small, dispersion dominates, and the equation is parabolic in 
character. When Pe is large, convection dominates, and the character of the equation 
changes to hyperbolic. In nonuniform flow fields where the velocity is not constant, 
Pe may vary from point to point both in space and time. As a result of this variation, 
the dispersion+onvection equation may vary in character within a given field and 
with time, being predominantly parabolic in some regions and predominantly hyper- 
bolic in others. 

Most conventional numerical methods for solving the dispersion-convection 
equation can be classified into two major categories, Eulerian or Lagrangian, 
depending on the emphasis that they place on the parabolic or hyperbolic nature of 
the problem. In the Eulerian method, the governing equation is discretized by means 
of a finite difference or finite element grid fixed in space. Early experiments with 
finite differences [29, 36,401 have shown that this technique performs well in 
dispersion-dominated situations at low Peclet numbers where the concentration 
function is relatively smooth. However, when the gradient of concentration is steep 
due to the prevalance of convection at high Pe, methods based on central difference 
approximations for the convection term may suffer from oscillations resulting in 
overshoot, undershoot, and negative concentrations. Price et al. [ 3 I] proved that such 
oscillations can be eliminated by restricting the size of the spatial grid increments; in 
the case of Eq. (2), the increments must satisfy Ax < 2/Pe. Since this is not always 
practical, the alternative is to use upstream difference approximations (also known as 
upstream weighting) which are able to eliminate oscillations, but they also introduce 
large truncation errors which are equivalent to a numerical (as opposed to physical) 
dispersion term [ 7,211. The effect of this numerical dispersion term is to smear sharp 
concentration fronts. Lantz [21] showed that for many practical problems, reducing 
numerical dispersion sufficiently so as to prevent masking phsyical dispersion may 
require an extremely line grid. Another way to reduce numerical dispersion in 
upstream schemes is to cancel part of the truncation error by using higher-order 
approximations in space 19, 14,23,41], time [6-8,451, or both (221. Most of these 
have the effect of adding a negative correction term to the dispersion coefficient. A 
similar effect can also be achieved by means of flux corrections [4] or on the basis of 
physical considerations 143). 

In recent years, there has been a growing belief that an alternative Eulerian 
approach for handling sharp fronts may be provided by high-order finite element 
techniques such as those proposed by Price et al. [32] and others [35,44]. Price et 
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al. showed that high-order Galerkin approximations using smooth and nonsmooth 
Hermite polynomials are potentially far more accurate for a given amount of 
computational effort than standard finite difference techniques. Low-order finite 
element schemes also appear to be more accurate than standard finite differences 
[ 11,39,42]. However, in dealing with convection-dominated problems (especially the 
translation of square waves), the former are sometimes inferior when compared to the 
lowest-order flux-corrected finite difference scheme of Book et af. 14,201. 
Furthermore, time-centered finite element schemes suffer from oscillations, and 
backward difference schemes exhibit numerical dispersion [ 11,421. An upstream 
weighting finite element technique devised by Huyakorn [ 12, 151 reduces oscillations 
only at the expense of numerical smearing. So far, neither higher-order interpolations 
in space [42] nor in time 1371 have proven capable of entirely eliminating both 
problems. Only a combination of high-order Hermite polynomials with a high-order 
approximation in time appears to provide a remedy to both ills [45]. 

Since standard Eulerian techniques are unsatisfactory, and the more complex 
techniques may not always be easily adapted to difficult problems, it is of interest to 
examine methods founded on the Lagrangian approach. Such methods are based 
either on a deforming grid or on a fixed grid in deforming coordinates. Varoglu and 
Finn [47,48] and Varoglu 1461 used space-time finite elements in one and two 
spatial dimensions, respectively, with sides paralleling either surfaces of constant 
time, or surfaces defined by characteristics. In this manner, the finite element 
equations become free of convective terms, resulting in a relatively wellbehaved 
diffusion-type problem. The idea is based on earlier uses of space-time finite elements 
in connection with the Stefan problem [ 2,3 ] and equations representing conservation 
laws [ 161. The method was tested by the authors on various problems ranging from 
dispersion-dominated cases to the pure convection of a rectangular wave. Their 
results did not show any oscillations and exhibited only a small amount of numerical 
dispersion in the case of pure convection. Another closely related approach is that 
described by O’Neill and Lynch [28] in which the nodal points of a one-dimensional 
Hermitian finite element grid are shifted during each time step parallel to the charac- 
teristics. The resulting finite element equations, which are coupled with finite 
differences in time, are thus devoid of convective terms and can be solved without 
difficulty. The authors demonstrated that when the grid is made fine enough in the 
vicinity of a sharp front, the results can be entirely free of oscillations or numerical 
dispersion. Not only are both methods highly accurate but, when convention 
dominates, both are also able to use large time steps such that the distance traveled 
by a fluid particle, say, As, is well in excess of the distance between contiguous nodal 
points, say, Ax. In many other methods, stability and convergence require that time 
step size be small enough to satisfy te Courant-Friedrichs-Lewy condition As < a Ax 
where a, the Courant number, is at most 1 1381. Practical experience with various 
Eulerian schemes, including Hermitian finite elements, suggests that it is prudent to 
set a equal to 3 [28]. 

Jensen [ 171 and Jensen and Finlayson [ 181 proposed a scheme in which the disper- 
sion-convection equation is written in Lagrangian coordinates with origin at the 
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center of a moving front. When the velocity field is uniform, the equation becomes 
free of convective terms; otherwise, some residual first-order derivatives remain. By 
using orthogonal collocation on finite elements, the authors were able to obtain good 
results which showed no oscillations and only a minute amount of numerical 
dispersion at high Peclet numbers. 

Even though these Lagrangian methods are more powerful than existing Eulerian 
techniques, they suffer from several limitations which may become serious when one 
considers complex problems such as the subsurface transport of nuclear waste. Since 
subsurface environments are often characterized by highly nonuniform material 
properties, the movement of nodal points across material interfaces may cause 
difficulties in the handling of equation parameters, especially if sorption and chemical 
reactions are important. Such movement may also result in severe grid deformations 
due to the refraction of streamlines across material interfaces, leading to numerical 
errors. When multiple sources exist, as in the case of chemical injection into the 
subsurface through several wells, concentration fronts may propagate in opposite 
directions and cross each other at various angles. This type of transport cannot be 
handled with the aid of deforming meshes or moving coordinates of the kind 
described above. Since velocities are usually computed independently of the transport 
problem by using a fixed Eulerian grid, it would be most convenient if the disper- 
sion-convection equation could be solved on a grid compatible with the latter, 
especially when the velocity field varies with time. Finally, when the grid or the coor- 
dinates deform, the finite element matrices must be reevaluated and/or decomposed 
anew at every time step (in the case of Lagrangian coordinates, this is so because the 
boundary location varies with time); in linear problems solved on a Eulerian grid, the 
matrices remain constant, and if the time increment is fixed, a single LU- 
decomposition is enough. 

The purpose of Eulerian-Lagrangian methods is to combine the simplicity of the 
fixed Eulerian grid with the computational power of the Lagrangian approach. Runca 
and Sardei 1341 proposed to do this for horizontal advection and vertical eddy 
diffusion of air pollution by discretizing the vertical wind profile in a stepwise 
fashion. They then used different time intervals for each step so as to translate the 
concentration field to positions coincident with fixed Eulerian grid points during each 
time increment. Melli [24] solved the same problem with an irregular grid adapted to 
the wind profile so that the horizontal distance between nodes at each elevation is 
exactly equal to the distance traveled by a particle due to advection during a time 
step. Although his technique yielded good results for relatively large eddy 
diffusivities, attempts to propagate a sharp front met only with marginal success. 

More interesting than the former is the particle tracking method originally 
suggested by Garder et al. [lo] and later used extensively for subsurface transport 
15, 19, 30, 331. In this method, convection is handled by the method of characteristics 
applied to a set of moving particles. The dispersion part of the problem is solved by 
an explicit finite difference scheme on a fixed grid. In another version of the particle 
tracking method [I], dispersion is effected by means of a random walk process 
applied to each particle. Although both versions are virtually free of numerical 
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dispersion, they suffer from instability when the time step size exceeds a certain limit. 
The theory behind the particle tracking method is vague and therefore it cannot be 
shown to converge. The treatment of complex boundary conditions and nonlinearities 
is not straightforward, and implementation is complicated by the constant need to 
add particles at sources, eliminate them at sinks, and redistribute them in converging 
and diverging flow regimes. 

In order to avoid the need for an independent set of moving particles, Hinstrup et 
al. [ 131 suggested redefining the particles at discrete time intervals so as to make 
them coincide with the nodes of a fixed finite difference grid. The position of each 
particle at intermediate times is obtained by polynomial interpolation between 
concentration values at neighboring grid points. 

In the Eulerian-Lagrangian method proposed herein, convection is formally 
decoupled from dispersion in a manner which, contrary to previous such attempts 
[ 10, 131, does not leave room for ambiguity. Since the convection and dispersion 
problems require different treatments, they are solved on separate space-time grids. 
The nodes of these grids may, but need not, coincide at selected points. The spatial 
grids are fixed, but there is nothing in the method to prevent them from being defor- 
mable, if so desired. The method consists of solving the convection problem on one 
grid by the method of characteristics, projecting the result on the other grid by 
piecewise interpolation, solving the dispersion problem on this latter grid by finite 
elements, and finally projecting the result back on the first grid. A finite element 
approach based on the adaptive mixed explicit-implicit formulation [ 25-27) is shown 
to be particularly well suited for this problem. 

The paper includes five one-dimensional examples covering the spectrum from 
dispersion-dominated problems to the pure convection of a rectangular wave. Even 
though projection from grid to grid in these examples is accomplished by piecewise 
linear interpolation, and the finite elements are constructed with piecewise linear basis 
functions, the results are entirely free of oscillations. Numerical dispersion exists but 
is kept under control by solving the convection problem on a grid having either 
sufficiently small spatial increments, or sufficiently large time increments. Not only is 
the time step size unaffected by the Courant-Friedrichs-Lewy condition but, in many 
cases, best results are obtained when the Courant number is well in excess of 1. 
Extension of the methodology to two- and three-dimensional problems requires 
further investigation. 

2. THEORY 

Consider the one-dimensional dispersion-convection equation 

s(x,t)g=g D*(x,t)&u(x,t)c 
[ 1 

- +, t>c + 4(x, t) on (q, xR) X (0, tl, (3) 
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where c, X, and t are the same as in Eq. (2); D* is dispersion coefficient; u is velocity; 
A is decay coefficient; q is source term; s is retardation factor; x, and xR are left and 
right boundary points, respectively; and (0, r] is time interval of interest. The 
parameters of Eq. (3) satisfy D* > 0, A > 0, and s > 0. The equation is to be solved 
for c, subject to the initial and boundary conditions 

44 0) = co(x) on (xL, x,>, (4) 
I 

-D” $ f UC + a;(~ - Ci)= Q; on xi E (0, r], i= L, R (5) 

Here co(x), Ci(t), and Q,(t) are prescribed functions, and ai controls the type of 
boundary condition prevailing at xi X (0, r]: If ai + co, Eq. (5) is a prescribed 
concentration condition; if ai = 0, it is a prescribed mass flux condition; otherwise, it 
is a mixed condition. 

Since the retardation factor is assumed to satisfy s(x, t) > 0 for all x, t E (xL, xR) x 
(0, r]. one can define the hydrodynamic derivative, D/D& as 

D a va 
ot=at+sz (6) 

With the aid of this derivative, Eq. (3) can be rewritten in the form 

S(I_t)$=~[D*(X,I)~]--f(X,t)c+q(X,t) on (xL,xR)x(O,r] (7) 

where f = au/ax + A. Here c no longer represents concentration at a point in 
space-time, but rather the concentration of a fictitious fluid particle moving at a 
velocity v/s. The pathline of this particle is described by the hydrodynamic derivative 
of x, which leads to the characteristic equation 

Dx/v = Dt/s on (xL,xR) x (0, 51. (8) 

Equations (7)-(8) together with Eqs. (4)-t(5) imply that c(x, t) can be expressed as 
the sum of two functions, C(x, t) and E(x, t), in the form 

c=c+t. (9) 

One way to define C is to require that it satisfy the homogeneous differential equation 

DF/Dt = 0 on C-G, 5) x (0, 51 (10) 

subject to the initial condition 

&5 0) = co(x) on (XL, xR) (11) 
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and the Cauchy condition 

u? + CfJF - Ci) = Qi on xix(O,t]; i=L,R. (12) 

Here xi represents an inflow boundary at which fluid particles are entering the 
system; conditions at outflow boundaries have no effect on C and are therefore 
irrelevant. Clearly, the F value of a given fluid particle remains constant as the latter 
is convected through the flow field. The function E must then satisfy the equation 

s(x, t) $ = 2 
A,[ ?3:1 

D*(x t) E -j-(x, t)t + q(x, t) + g(x, t) on (.x,., xR) x (0, 51, 

(13) 

where 

g(x,t)=fJD*(x,l)~] -f(x,t)C 

subject to the initial and boundary conditions 

ti(x, 0) = 0 on (x,, xR), (14) 

-D* $ + (u + cq)E = i; on xi x (0, r], i= L, R, (15) 

where h(xi, t) = D* Z/lax. If xi is an outflow boundary at which particles are leaving 
the flow field, it is convenient to set a,.--+ co so that Eq. (15) reduces to E(x,, t) = 0. 
This choice, though not necessary, is always possible due to the insensitivity of C to 
conditions prevailing at outflow boundaries. Note that Eqs. (13~( 15) are the same as 
Eqs. (7) (4) and (5), respectively. The fundamental difference is that in the former, C 
is treated as a known function, which is tantamount to saying that the effect of pure 
convection is known prior to solving Eqs. ( 13~( 15). 

From the foregoing discussion we see that the original parabolic-hyperbolic disper- 
sion-convection problem defined by Eqs. (3t(5) can be formally decoupled into a 
purely hyperbolic problem defined by Eqs. (lo)-( 12), and another problem defined 
by Eqs. (13b( 15). The approach is to first solve the hyperbolic convection problem 
for C, as the latter is independent of c’, and then solve the remaining problem for P. 

Another way to decompose c is to require that C satisfy the nonhomogeneous 
differential equation 

s(x, t) g = -j-(x, t)c + q(x, t) on (xI,,xR) X (O,rl (16) 

subject to Eqs. (11) and (12). When this is the case, E must satisfy 

-f(x, t)E + p(x, t) on (x,.,-d X (0, ~1, (17) 
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where 

subject to Eqs. (14) and (15). While this is a valid approach, it will not be pursued 
further in this text. 

3. EULERIAN-LAGRANGIAN NUMERICAL METHOD 

3.1. Conjugate Space-Time Grids 

In the numerical scheme proposed herein, the convection problem is solved for C by 
a stepwise method of characteristics, and the remaining problem is solved for t by 
finite elements. Since these two methods of solution are very different from each 
other, there is an advantage in using a different grid for each. The grid used for 
solving Eqs. (lo)-(12) is referred to as “convection grid,” and that used for 
Eqs. (13k( 15) is called “dispersion grid.” Both grids are fixed in space and have 
distinct spatial and temporal increments. Their nodes may, but need not, coincide at 
selected points in space and time. 

Figure 1 shows the particular conjugate space-time grids used in this paper. The 
spatial and temporal increments of the convection grid are Ax and At; those of the 
dispersion grid are A’x and A?. For reasons that will become obvious later, these 
increments are chosen such that Ax < A”x and At > A?. In addition, the grids are 
conveniently made to coincide at every x, = lAox and t, = kdt, where I, 
k = 0. 1. 2.. . . . Although the discretization intervals in Fig. 1 are constant, there is 
nothing in the theory or the method to prevent them from being variable in both 
space and time. 

Let ck be the vector of nodal c values on the convection grid at time t,. Assume 
that ch is known; we desire to compute ck+’ corresponding to a later time, 
f,, , = t, + At. We will accomplish this in two stages: first by evaluating C on the 

FIG. 1. Overlapping convection and dispersion grids. 



218 SHLOMO P. NEUMAN 

convection grid at tk+, by the method of characteristics and projecting it onto the 
dispersion grid, and then by evaluating c” on the dispersion grid at tk+ , by finite 
elements and projecting it back onto the convection grid so as to obtain C + E. 

3.2. Convection by Method of Characteristics 

In most non-Eulerian techniques mentioned earlier, the method of characteristics is 
implemented by tracking the movement of fluid particles across the entire flow field, 
from the time they enter at a source, until they leave at a sink. In some of these 
techniques [ 17, 18,28,46-48] the particles coincide with nodal points, thereby 
causing either the grid or the coordinates to deform permanently with time. 

In the method described below, the particles are redefined at every time step, At, so 
as to coincide with the nodes of our fixed convection grid. At the beginning of a time 
step starting at t,, the nodes of the convection grid are designated as moving 
particles. The pathline of each such nodal particle during the time interval (tk, tk+ , ] 
can be charted out through integration of Eq. (8). If the position of the nth nodal 
particle at time t, is X, then, according to Eq. (8), its position at time tk+ , will be 

x:+*=x, + (18) 

Since v and s are given, x”,’ ’ can be determined explicitJ for every node n. 
In the particular case where v/s = constant, or when At is small, the characteristics 

are straight lines or can be approximated as such. This situation is illustrated in 
Fig. 2. The figure shows that during the time step dt each nodal particle, n, is tran- 
slated from its old position, x,, to a new position, x”,’ i , along a straight line segment 
representing the characteristic passing through the point x, at time t,. This causes a 
temporary deformation of the convection grid (temporary because the results will be 
eventually projected back onto the original fixed grid points in the manner described 
below). Let 13(x:+‘, tk+ i) be th e value of e at the new location, x”,’ ‘, of a particle 
originating at x,. Then by virtue of Eqs. (10) and (1 l), 

qx;+ ’ Jk+,)=c:, (19) 

- Nodes of Dlsperston Grid 
ONodes of Ccmvectlon Grid 

PIG. 2. Method of characteristics illustrated for constant u. 
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where cf: is c at (x,, fk). According to Eq. (12), the value of F at the inflow boundary, 
x, in Fig. 2, is given by 

F(XL, fk+,) = Q$yL / 
L f=tk+ I 

(20) 

On the basis of these point values, the function C(X, tk+ 1) can be approximated by a 
suitable interpolation formula over the entire flow domain [x,, x,]. If n = 1 is the 
node corresponding to x, , and if Ix:’ ’ - x, ] > Rx, it may sometimes be required to 
obtain additional values of 5(x, tk+ ,) at one or more points x:+’ E (xL, x:+‘) for the 
interpolation to be sufficiently accurate. This can be done by allowing individual 
particles, p, to enter the system across xL at one or more values of time, 
t, E (tk, tk+ ,), such that 

x;+‘=xL + I fk+‘uDl 
fP s (21) 

as shown in Fig. 2. This measure is needed only if the boundary condition at xL 
varies with time during At. 

After P(x, tk+ ,) is approximated by an appropriate interpolation formula, the 
function is projected onto the locations of the nodes representing the fixed convection 
and dispersion grids. This is equivalent to removing the effect of grid deformation. 
The procedure is illustrated in Fig. 2. The result is a set of nodal values, $’ ‘, of E at 
every X, at time tk+ , . The particular computational results described below were 
obtained by piecewise linear interpolation. Additional possibilities worth exploring in 
the future include the use of cubic splines or other higher-order interpolation schemes. 

If u/s varies with x and/or t, one may either treat it as a constant for the duration 
of dt, or evaluate the integrals in Eq. (18) and (2 1) numerically by a suitable method 
such as Gaussian quadrature. In the latter case, the characteristics will no longer be 
straight lines but curves of arbitrary shape. This does not pose much difficulty 
because the form of the characteristics has no effect on our numerical procedure; 
only the final position of each nodal particle, xk,+‘, is important. We may conclude 
that the magnitude of dt is not restricted by the configuration of the pathlines. As a 
matter of contrast, Varoglu and Finn [47,48] use space-time finite elements having 
sides formed by characteristic curves. In complex flow fields, their approach may 
require keeping the time step small enough so as to enable approximating the element 
sides by polynomials of a sufficiently low degree. 

3.3. Dispersion by Finite Elements 

For the purpose of solving Eqs. (13)-( 15), it is convenient to identify each point, 
x E [x,, x,], in the flow domain with a particle having reached the point x at time 
t, + 1. In particular, let x, be the location of the nth node in the convection grid, and 
let N be the total number of such nodes. Similarly, let x, be the location of the pth 
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node in the dispersion grid, and let P be the total number of these nodes. Then each 
node, n and p, is identified with a particle having reached the point x, or x, at time 
t k+l’ 

Equations (13~(15) can be solved for F by a finite element method applied over 
the dispersion grid. Other possible methods of solution not explored in this paper 
include explicit or implicit finite differences, integrated finite differences, and point 
collocation. We shall approximate the function F(x, t) by ?(x, t) according to 

(22) 

where C, are nodal values of C along the convection grid, and C& are prescribed basis 
functions satisfying Qx,) = 6,, , the latter being the Kronecker delta (i.e., 6,, = 1 if 
n =m and a,,,,,= 0 if n #m). Similarly, we shall approximate c!(x, t) by c?(x, t) 
according to 

2(x, t) z cqx, t) = $ ep,(t> tpw, (23) 
p=1 

where ep are nodal values of E along the dispersion grid, and tp are prescribed basis 
functions satisfying &(x,) = 6,, . Application of the Galerkin orthogonalization 
process to Eq. (13) gives 

a(P + F) 
ax 1 +f(?‘+?‘)-q tpdx=O, 

I 
p = 1) 2, 3 )..., P, 

(24) 

where the time derivative is treated for the moment as a known function. Integration 
by parts yields 

0 
Sg+/(C”tP)-q $+D* 

I 

+6 
LP 

D* a(?+?) 
ax 

-6 
RP 

D* a(?+0 
3X 

= 0, p = 1) 2 )...) P, 
X=X,, X=XR 

(25) 

where L and R are the nodes at xL and xR, respectively. 
As will be seen below. by regarding each node as a moving particle, the resulting 

problem for E will become purely parabolic in nature. It has been shown (261 that for 
such parabolic problems, there is an advantage in adopting the so-called lumped-mass 
finite element approach, in which the first integral on the left side of Eq. (25) is 
approximated by 

(26) 
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Note that this is analogous to what one does in most conventional finite difference 
schemes. Substituting Eqs. (15), (22), (23), and (26) into (25) leads to the following 
system of ordinary differential equations, 

(A + B + F)1+ S $ = Q. (27) 

Here A is a symmetric positive-definite “dispersion matrix” of order P whose p, rth 
term is defined as 

B is a diagonal “boundary matrix” of order P, whose terms are 

B,, = (4, - 4& Ix+, + a,>, ap < 03, 
B,, = 0, ap-+ 03. 

F is a square symmetric matrix of order P defined by 

(28) 

(29) 

(30) 

e is the P-dimensional vector of F, values. S is a diagonal “retardation matrix” of 
order P having the terms 

Finally, Q is a “source vector” defined as 

where 

(33) 

Note that when a,, -+ co, c!,, is known to be zero by virtue of Eq. (15), and the pth row 
of Eq. (27) is not needed to compute e. Thus, p,, need not be evaluated from Eq. (33) 
but can be obtained a posteriori from Eq. (27) after e has been computed, if so 
desired. 
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The computational results described later in the text were obtained with the aid of 
piecewise linear “chapeau” basis functions [32] defined as 

L(x) = L(x) u L+<x>, 

T,(x) = 4p - (xl u tp + (x)3 
(34) 

where 

(n&) = x -x,-l 
X” -&-I’ xc b,-1&J, 

<n+(x) = Zn+‘IZ 3 XE bvxn+11~ n+1 ” 
cj,-(x) zz x -xp-l ) 

xp -x*-1 XE [xp-,,xp], 

tp+<x> = ;+I -x ) 
p+l -X, 

x E bp, x,+,1, 

and xL=x, <x, < ..- <x, < ..- <x,-, <x,=x, as well as xL=xI <x,< . . . < 
XP < *** <xppl <$,=xxR. By assuming that D*, f, s, and q are uniform within any 
given element of the dispersion grid, the integrals in Eqs. (28) and (30)-(32) are 
easily evaluated : 

A,,=+y,,, P Z r, 
e 

A, = - c Ap,., 
‘fP 

rp,= 1 if p and r are contiguous nodes 

(35) 

=o otherwise, 

where d is the element of the dispersion grid defined by xP and x,, D$ is the value of 
D* in 4 and L, is the length of k (equal to &‘x in Figs. 1 and 2); 

E;,, = if&,~p,, P f r, 

Fpp = 2 c Fpr, 

r+P 

(36) 

where f, is the value off in f?; 

(37) 
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where s, is the value of s in d and the summation is taken over the two elements 
contiguous with p; and 

(38) 

where q6 is the value of q in k and, for the case where each d”x contains an integer 
number of bx)s as in Fig. 1, 

G,,=T [-$f (32-I) +$] if x, =xP 

Jx D$ 
6L, L, 

if xP-, <x, <xP 

if xP <x, <xP+, 

if x,=xp-,,xp+,. 

Here L, is the length of each element of the convection grid lying inside k (equal to - 
dx in Figs. 1 and 2), and the summation is taken over the two elements contiguous 
with p. Better accuracy could probably be achieved with higher-order basis functions 
and a more precise description of the manner in which D*, f, s, and q vary in space. 

The differential matrix equation (27) will be integrated in time by finite differences. 
If this integration would take place at nodal points fixed in space, the hydrodynamic 
derivative D&/Dt would have to be expressed as the sum of a partial derivative &/at 
and a convective term. In order to avoid dealing with such a convective term, we will 
perform the time integration in a manner which is analogous to solving Eq. (27) 
along the characteristics defined by Eq. (8). The resulting problem will thus have a 
purely parabolic nature, and will involve only symmetric and diagonal matrices. 

Let ek,’ be the value of 6 at time tk,j = tk +jA”t, where j = 1,2,..., J and JA”t = dt 
so that ckV’ = ck+‘. As mentioned earlier, we assume that all nodes n of the fixed 
convection grid, and all nodes p of the fixed dispersion grid, are moving particles 
having reached their respective positions at time tk+ 1. If n and p were not particles 
but fixed points in space, C, and FP would generally vary during dt. If, however, we 
set E;, and F,, equal to c$” and I$’ I for the duration of dt then we are implying, by 
virtue of Eq. (lo), that n and p are particles that have traveled along their respective 
characteristics and reached their current positions at time tk+, . Since the only term 
involving F in Eq. (27) is Q, it is enough to evaluate Q in Eqs. (32) and (38) in terms 
of p’ ‘. We will designate the resulting value of Q by Qk’ ‘. 

In order to avoid tracing the actual path taken by each nodal particle during At, it 
is convenient to evaluate the matrices A, B, F, and S in Eq. (27) only at the end of 
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the time step when the particle locations are known. This leads to the following finite 
difference equivalent of Eq. (27), 

where 0 < 13 < 1. Since at t, the function C is set equal to c, Eq. (14) implies that 
ck,’ = 0. This provides the initial condition needed for solving Eq. (39) for ck*’ from 
j = 1 to J. Note that in the particular case where J = 1 and 0 = 1, Eq. (39) reduces to 
a simple backward difference scheme valid along characteristics passing through the 
fixed nodal points of the two conjugate grids. After solving Eq. (39) for 2:’ ’ at all 
nodes, p, of the dispersion grid, one can use Eq. (23) to compute Ei+’ at each node, n, 
of the convection grid according to 

P 
-k+l= \,‘ 

C, i 
E:, + ‘cfp(x,). 

p= 1 

The final concentration at the nodes of both grids is then given by 

‘ktl = 
CP p = 1) 2 )...) P, 
‘ktl 
cn 

=c;+l +ck,+1, n = 1) 2 )...) N. 
(41) 

A few additional remarks concerning Eq. (39) are in order. Consider the pth row 
of this equation, 

2 (Apr + Bp, + FpJol Iet;J + (1 - 8) $F’] 
r=l 

+ SE; ‘($A _ f;&l)/Aot = Q;+ 1, O<j<J. (42) 

When 0 = 0, Eq. (42) can be solved explicitly for $,j (this is a direct consequence of 
the lumped-mass approximation in Eq. (26)). Neuman and Narasimhan (261 proved 
that such a solution will be stable provided only that 

and 

g (A,, + BP, + F,,) < 1 
PP 

(43) 

A,, + BP, + F,, > 1 IA,, + Bpr + FpJ (44) 

Thus, the problem can be solved explicitly at nodes satisfying the above criteria for a 
given A?, and implicitly at all other nodes. This leads to an adaptive mixed 
explicit-implicit approach which results in improved computation efficiency when 
dealing with nonuniform flow fields and parameters varying in space [ 25-271. 
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Experience shows that in order to prevent oscillations, the c values at nodes of the 
convection grid lying in the interior of a given element of the dispersion grid must 
vary monotonically between the values at the element end points. When this is not the 
case, as may happen on a few occasions, the interior c values must be modified so as 
to satisfy this requirement. In this paper, the interior c values were made to vary 
linearly between the nodes of the dispersion grid whenever one of them exceeded the 
largest, or fell below the smallest, c values at the edges of an element. There is little 
doubt that this arbitrary smoothing may cause some numerical dispersion, although 
the primary cause of such dispersion is the interpolation of c values as described 
earlier in connection with Fig. 2. Fortunately, we will be able to demonstrate later - 
that numerical dispersion is amenable to control either by reducing dx or by 
increasing Z. 

As stated earlier, Eqs. (13~(15) are the same as Eqs. (7) (4), and (5), respec- 
tively. Thus, instead of solving the former for E one could, in principle, solve the 
latter for c. However, posing the problem in terms of 6 has an advantage: In many 
cases, C! varies much more slowly in space than c and, therefore, can be approximated 
by means of low-order basis functions defined on a relatively coarse finite element 
grid. 

4. REVERSING THE SOLUTION SEQUENCE 

The methodology described in Section 3 of this paper requires that, during each At, 
C be calculated by the method of characteristics prior to computing E by finite 
elements. This means that the concentration profile is first translated parallel to the 
characteristics, and only then allowed to disperse. Another possibility is to reverse the 
sequence of the solutions by allowing the profile to disperse before it is translated in 
the direction of the flow. For this purpose, it is convenient to treat all nodes, n, of the 
fixed convection grid, and all nodes, p, of the fixed dispersion grid, as particles about 
to move away from their respective positions at time t,. According to Eqs. (10) and 
(1 1 ), C;, and CP must remain equal to ci and ci, respectively, during the entire time 
interval At. This requirement can be satisfied by evaluating Q in Eqs. (32) and (38) in 
terms of ct. We will designate the resulting value of Q by Qk. 

In order to avoid tracing the actual path that each nodal particle will take during 
dt, the matrices A, 6, F, and S are evaluated at the beginning of the time step when 
the particle locations are knwon. This leads to the following finite difference 
expression for Eq. (27): 

(A + B + F)k [fXk,j + (1 - 8) ik*j-‘] 

+ sk(&kJ -&k&l )/A’? = Qk, O<j,<J. (45) 

Since at t, the function C is set equal to c, Eq. (14) implies that ek*’ = 0, which 
provides the necessary initial condition for Eq. (45). Note that in the particular case 
where J = 1 and B = 0, the latter equation reduces to an explicit forward difference 
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scheme valid along characteristics passing through the fixed nodes of the two 
conjugate grids. 

After solving Eq. (45) for c!;+’ at all nodes, p, of the dispersion grid, one can use 
Eq. (40) to compute Ek,+ ’ at each node, n, of the convection grid. The total concen- 
trations at p and n, prior to translation, are therefore (ci t c$“) and (c”, t Ek,’ ‘), 
respectively. These values must now be translated along the characteristics, and then 
projected back onto the fixed locations of both sets of nodes, in the same manner as 
that explained earlier in connection with ? (see Fig. 2). 

The question of which is preferable, translation first and dispersion second, or 
dispersion first and translation second, will receive a preliminary answer in the 
following section. 

5. EXAMPLES 

The following five examples show how the conjugate grid method performs under a 
variety of conditions. All the results were obtained by using piecewise linear ihter- 
polation and time-centered (0= 0.5) linear finite elements with chapeau basis 
functions. The results quoted for Examples l-4 were obtained by using the method of 
translation tirst, dispersion second, during each dt. The results quoted for Example 5 
were obtained by reversing this sequence of operations. 

Example 1 concerns the problem of solving 

on (0, xR) X (0, r] (46) 

subject to 

c(x, 0) = 0 on (0, xR), (47) 

c(0, t) = 1 on (0, r], 

C(XR,t)=O on (0, r]. 
(48) 

The physical and grid parameters, in an arbitrary system of consistent units, are 
D* = 0.01, u = 0.05, xR = 2.5, Ax = Aox = 0.05, and dt = dot = 0.5. The problem is 
strongly dispersion-dominated with a Peclet number Pe = ux,/D* = 12.5. The results 
for t = 2, 6, and 10 are shown in Fig. 3. They are seen to compare very well with the 
analytical solution, 

c(x,t)=+erfc (:‘.$L) t+exp ($) erfc( c&), (49) 

which is valid for xR + co. Similar results were obtained for this problem by Varoglu 
and Finn 1471. 
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- ANALYTICAL 

i?‘A~f’05 
l XT = A’X = 0.05 

. 
\ 
-d Iv- , 

02 04 0.6 0.0 1.0 1’2 n 1’4 ’ 1’6 ’ I10 

FIG. 3. Results of Example 1. 
X 

FIG. 4. Results of Example 2 for t =L 5 X 10e5 using dr= Aof= 10e6. 

c ’ o-- 

di:~'t= 454 x 10-6 
0% d-X = 0.02 

06- 

04. 

02. 

FIG. 5. Results of Example 2 for I = 5 X 10e5 using Ar = Aor = 4.54’ X 10d6. 
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04. 
ANALYTICAL- 

w+,-w- 

02. 

0 01 02 03 04 05 06 07 
X 

FIG. 6. Results of Example 2 for t = 5 X lo-’ using df = 1.66’ X 10e5 and A”? = 1.66’ X 10eh. 

Example 2 is similar to the previous one except that now D* = 1.0, v = 104, 
xR = 1.0, and Aox = 0.02. The problem is strongly convection-dominated with 
Pe = vx,/D* = 104. Figure 4 shows that when dt= A”t = 10-6, the results at - 
t = 5 x lo-’ depend on Ax. When dx= Aox, there is considerable numerical - 
dispersion. As Ax decreases, the numerical dispersion diminishes, and when - 
dx= Aox/ 1, it almost vanishes, As one may expect, when Ax = Aox/ = u dt, the 
Courant number is 1, and the numerical solution is almost exact (not shown in 
Fig. 4). The case where the Courant number is equal to 1 is of limited practical 
interest and will not be considered further in the examples that follow. 

If the time steps are made larger so that dt= dot = 4.54’ X 10-6, numerical 
dispersion is drastically reduced. This is illustrated in Fig. 5, which shows that accep- - 
table results can now be obtained with a coarser convection grid having Ax = A”x/3. 
The above value of di corresponds to a Courant number of 2.27’. 

C’O 
f = 6 I lO-4 

~‘t= 6x 10-6 

08 

06 

x 

FIG. 7. Results of Example 3 for t = 6 X 10e4 using At =A? = 6 x lo-‘. 
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According to Fig. 6, a further reduction in numerical dispersion can be achieved by 
increasing dt to 1.66’ x lo-‘, while keeping A”t smaller by a factor of 10. This value 
of dt corresponds to a Courant number of 8.33’. The results of Example 2 clearly 
indicate that numerical dispersion can be controlled by refining the convention grid in 
space, or coarsening it in time, without regard to the Courant-Friedrichs-Lewy 
condition. Readers interested in comparing our results with those of other methods 
are referred to Lam [ 201 and Varoglu and Finn [47 1. 

Example 3 concerns the convection and dispersion of a rectangular wave. The 
problem is defined by Eq. (46) subject to 

c(x, 0) = 1 when 0.1 GxGO.2 

=o when O<x<O.1;0.2<~< 1.0; 

c(O,t)=c(l,t)=O 

and its analytical solution is 

c(x,t)=+-erf i”,Lg’) ++erf tb2+Gf), (52) 

where 26 = 0.1 is the width of the rectangle. The results at f = 6 X 10e4 for D* = 1.0, 
u = 103, Aox = 0.01, and At = dot = 6 x lop6 are shown in Fig. 7. Large numerical - - 
dispersion is obtained when Ax = A’x, but it reduces rapidly as Ax becomes smaller. 
However, the tip of the peak remains clipped off even when dx = Aox/ 1. The 
situation is drastically improved when the time steps are increased by an order of 
magnitude to dt = A”t = 5.45’ X 1O-5 (Courant number of 5.45’) as shown in Fig. 8. - 
When Ax = A”x/2, the results are virtually perfect. Results obtained by other methods 
can be found in Lam 1201 and Varoglu and Finn [47]. 

Example 4 deals with the pure convection of a rectangular wave identical to that 
described in Example 3. Here D* = 0, u = 1, and even though the dispersion grid is 
not used, the value of A”x = 0.01 is given as a reference. The results for t = 0.6 using 
dt = 6 x IO-” are shown in Fig. 9. Again, large numerical dispersion is obtained - 
when Ax = Aox, which diminishes rapidly as dx becomes smaller. A drastic reduction 
in numerical dispersion is obtained when dt is increased by an order of magnitude to 
5.45’ x lo-* as demonstrated by Fig. 10. The reader may do well to compare our 
results with those of Lam [20] and Varoglu and Finn [47,48]. 

All the results shown in Figs. 3-10 were obtained by first translating the concen- 
tration profile, and then allowing it to disperse, during each dt. When this sequence 
was reversed, the results corresponding to the concentration pulses in Figs. 7-10 
remained essentially unchanged. However, the concentration fronts corresponding to 
Figs. 3-6 were now shifted slightly to the right. This shift occurred during the first 
time step, At, and remained essentially unchanged during all later time steps. It 
appears to have been caused by the left boundary, which prevented the front from 
dispersing in both directions, to the right and to the left, as long as its location coin- 
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FIG. 8. Results of Example 3 for r = 6 x 1O-4 using At = A? = 5.45’ x 10-j. 
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FIG. 9. Results of Example 4 for t = 0.6 using dt = 6 x lo- ‘. 

I i=o t=O.6 
i-t = 5.45 x 10-Z EXACT - 

A'X = 0.01 fi i Is'x 3 
fi=A'X 

/I. 
0.3 04 0.5 06 0.7 

0.6 

FIG. 10. Results of Example 4 for r = 0.6 using At = 5.45’ x IO-‘. 
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tided with that of the boundary itself (i.e., during the first dt). One may conclude 
from this that when a concentration front is close to an inflow boundary, it is better 
to translate it before the profile is allowed to disperse. 

Example 5 is included to demonstrate the ability of the conjugate grid method to 
handle problems with variable coeffkients. The governing equation is 

D*$f [v(x)c] -q(x)c=; on (x,, 4 X (0, tl, (53) 

where v(x) = -l/x and q(x) = -1/x2. When solved subject to the initial and 
boundary conditions 

c(x, 0) = 0, on (XI. 9 XII), (54) 

$(x,.i)=-$exp (-s), x, > 0, 

2 

c(x,,t)=-Ei -s ) 

( 1 

the result is 

- ANALYTICAL 

x 

FIG. II. Results of Example 5. 

(55) 

(56) 

(57) 
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where Ei is exponential integral. Figure 11 compares the latter with numerical results 
obtained by the method of dispersion before translation with D* = 1, X, = 0.5, - 
x,=2.5, Ax=A”x=0.04, and At=A”t=0.05 as well as 0.10 for t=O.l, 0.5, 1.0 
and 2.0. Similar results were reported by Varoglu and Finn [48]. 

5. CONCLUSIONS 

The following major conclusions can be drawn from this paper: 

1. Lagrangian methods which solve the dispersion-convection equation either on 
a deforming grid, or on a fixed grid in deforming coordinates, are generally better 
suited for convection-dominated problems than Eulerian methods based on a fixed 
grid. On the other hand, the use of a fixed grid in Eulerian coordinates is advan- 
tageous when dealing with complex problems involving spatially varying parameters 
and multiple sources. In addition, a fixed grid can be made compatible with other 
grids such as those used for computing the velocity field, does not require more than 
a single evaluation and decomposition of the associated finite difference or finite 
element matrix in linear problems, and is better suited for the handling of 
nonlinearities. The purpose of Eulerian-Lagrangian methods is to combine the 
simplicity of the fixed Eulerian grid with the computational power of the Lagrangian 
approach. 

2. The dispersion-convection equation together with the associated initial and 
boundary conditions can be formally decomposed into two problems, one involving 
pure convection, the other being free of convective terms. The “convection problem” 
can be solved independently at each time step by the method of characteristics 
applied to a grid fixed in space. The remaining “dispersion problem” can be solved 
by finite elements on a separate grid which may, but need not, coincide with the 
former at selected points in space-time. Due to the absence of convective terms, the 
finite element equations include only symmetric and diagonal matrices. In particular, 
the matrix coefficient in front of the time derivatives is diagonal and, therefore, the 
method is amenable to solution by an adaptive mixed explicit-implicit scheme 
[25-271. Since the solution of the dispersion problem will often vary in space much 
more slowly than the actual concentration profile, it can be approximated by means 
of low-order basis functions defined on a relatively coarse finite element grid. On the 
other hand, the grid associated with the convective part of the problem must 
sometimes be liner in the vicinity of sharp fronts in order to minimize artificial 
smearing of such fronts. Information can be transferred from one grid to another by 
local interpolation. 

3. When the conjugate grid method is implemented by linear finite elements and 
piecewise linear interpolation functions, the results are entirely free of oscillations. 
This means that there is no overshoot and/or undershoot, so that positive concen- 
tration profiles remain positive without suffering from negative “wiggles.” This is 
very important for nonlinear problems such as those arising in some chemically 
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reacting flows where the loss of positivity may lead to unstable results. The method is 
also free of phase errors as long as one does not allow sharp fronts to disperse while 
they coincide with inflow boundaries. While numerical dispersion exists, it can be 
controlled by reducing the spatial increment or increasing the time step size of the 
grid associated with the convection problem, the latter measure being the most 
effective. In contrast to many other methods, best results are often obtained when the 
time interval exceeds the upper limit allowed by the Courant-Friedrichs-Lewy 
condition. This is explained by the fact that in the proposed method, numerical 
dispersion is caused primarily by interpolation between nodes of the convection grid. 
The larger the time step size, the slower the accumulation of numerical dispersion 
errors due to such interpolation. 

4. Possible improvements worth investigating in the future include the use of 
higher-order finite elements, higher-order interpolation formulae such as cubic splines 
for transferring data from one grid to another, and variable interpolation of the kind 
recommended by Price et al. [32]. Another possibility is to allow the convection grid 
to deform continually while keeping the dispersion grid fixed. Extension of the 
methodology to two and three spatial dimensions requires further investigation. 
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